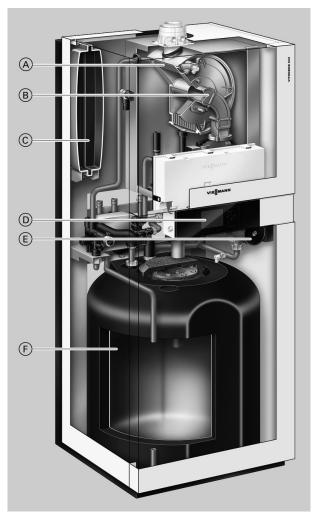


VITODENS 222-F

Datasheet

For part no. and prices: see pricelist

VITODENS 222-F Type B2TA


Gas condensing storage combi boiler, 3.2 to 35.0 kW for natural gas and LPG

VITODENS 222-F Type B2SA

Gas condensing storage combi boiler, 3.2 to 26.0 kW for natural gas and LPG

Benefits

Vitodens 222-F, type B2TA

- A Stainless steel Inox-Radial heat exchanger for high operational reliability, a long service life and high heating output in the smallest space
- (B) Modulating MatriX cylinder burner with intelligent Lambda Pro Control combustion controller for clean combustion and quiet operation
- © Integral diaphragm expansion vessel
- Digital boiler control unit

- (E) Integral, variable speed HE circulation pump
- F) DHW loading cylinder

The Vitodens 222-F gas condensing storage combi boiler is designed specifically for heating system modernisation projects and as a replacement for older gas boilers with cylinders installed below. With output up to 35 kW, this heating centre is designed for high DHW convenience.

The integral loading cylinder with 100 I capacity (up to 26 kW) or 130 I capacity (35 kW) offers the DHW convenience of a separate DHW cylinder with approximately twice that volume.

Like all Viessmann storage combi boilers, the Vitodens 222-F gas condensing boiler takes up little space: width and depth correspond to standard kitchen unit dimensions. The proven MatriX cylinder burner has a wide modulation range of up to 1:7 (35 kW). Together with the Lambda Pro Control combustion controller, it automatically adjusts itself to varying gas qualities and ensures a constantly high standard seasonal efficiency [to DIN] of 98 % (H_s) [gross cv].

Recommended applications

- Installation in detached and terraced houses
- New build (e.g. pre-fabricated houses and housing association projects): installation in utility rooms and attics
- Modernisation: Replacement of system boilers, floorstanding atmospheric gas boilers and oil/gas boilers with DHW cylinders below.

Benefits at a glance

- Standard seasonal efficiency [to DIN]: up to 98 % (H_s) [gross cv]/ 109 % (H_i) [net cv]
- Durable and efficient thanks to the Inox-Radial heat exchanger
- Modulating MatriX cylinder burner with a long service life thanks to stainless steel MatriX gauze resistant to high temperature loads
- High DHW convenience through enamelled loading cylinder with 100 I capacity (35 kW: 130 I capacity)
- Energy efficient HE circulation pump (A-rated)
- Easy to use Vitotronic control unit with plain text and graphic display
- The programming part of the control unit can also be fitted on a wall mounting base (accessory)
- Lambda Pro Control combustion controller for all gas types saves on fees, with inspection interval extended to 3 years
- Universal connection sets for individual installation flush with the wall
- No lateral service clearance required
- Assembly kit (accessory) with the dimensions and design of the appliance for the connection of one regulated and one unregulated heating circuit

Specification

Vitodens 222-F, type B2TA

Rated heating output range (to EN 677)					
		Va	lues in () when o	perating with LPG	P
$T_F/T_R = 50/30 ^{\circ}C$	kW	3.2 (4.8) - 13.0	3.2 (4.8) - 19.0	5.2 (8.8) - 26.0	5.2 (8.8) - 35.0
$T_F/T_R = 80/60 ^{\circ}C$	kW	2.9 (4.3) - 11.8	2.9 (4.3) - 17.2	4.7 (8.0) - 23.5	4.7 (8.0) - 31.7
Rated heating output for DHW heating	kW	2.9 (4.3) - 16.0	2.9 (4.3) - 17.2	4.7 (8.0) - 29.3	4.7 (8.0) - 33.5
Rated heat input	kW	3.1 (4.5) - 16.7	3.1 (4.5) - 17.9	4.9 (8.3) - 30.5	4.9 (8.3) - 34.9
Product ID		- (- ,	CE-0085	· /	. ()
IP rating			IP X4D to		
Gas supply pressure			7(.2 to		
Natural gas	mbar	20	20	20	20
3.1	kPa	2	2	2	2
LPG	mbar	50	50	50	50
	kPa	5	5	5	Į
Max. permissible gas supply pressure*1					
Natural gas	mbar	25.0	25.0	25.0	25.0
	kPa	2.5	2.5	2.5	2.5
LPG	mbar	57.5	57.5	57.5	57.
	kPa	5.75	5.75	5.75	5.7
Power consumption					
In delivered condition	W	39	53	68	88
–Max.	W	102	105	154	166
Weight	kg	129	129	132	14
Heat exchanger content	l I	1.8	1.8	2.4	2.8
Max. flow rate	I/h	1200	1200	1400	1600
(limit for the use of hydraulic separation)			00		
Nominal circulation water volume	l/h	507	739	1018	136
at T _F /T _R = 80/60°C	711		7.00	1010	100
Expansion vessel					
Content	1	12	12	12	12
Pre-charge pressure	bar	0.75	0.75	0.75	0.75
Tre-charge pressure	kPa	75	75	75	75
Permiss. operating pressure (on the heating	bar	3	3	3	
water side)	bui		· ·	o	`
Tractor oracly	MPa	0.3	0.3	0.3	0.3
Connections (with connection accessories)		0.0	0.0	0.0	
Boiler flow and return	R	3/4	3/4	3/4	3/
Cold water and DHW	R	1/2	1/2	1/2	1/
DHW circulation	R	1/2	1/2	1/2	1/
Dimensions		,,,	,2	,2	,
Length	mm	595	595	595	595
Width	mm	600	600	600	600
Height	mm	1425	1425	1425	162
Gas connection (with connection accessories)	R	1/2	1/2	1/2	1/
DHW loading cylinder		12	/2	72	
Content	1	100	100	100	130
Permiss. operating pressure (DHW side)	bar	10	10	10	10
remiss. operating pressure (Brive side)	MPa	1	1	1	,
Continuous DHW output	kW	17.2	17.2	29.3	33.5
for DHW heating from 10 to 45 °C	l/h	422	422	720	860
Performance factor N _L *2		1.8	1.8	3.0	4.8
DHW outlet output	I/10 min	182	182	230	273
for DHW heating from 10 to 45 °C	,, 10 IIIIII	102	102	230	213
Connection values					
relative to max. load					
with gas					
		1 00	1.00	2.22	2.6
	m ³ /h	1 20	1 74		.h m
Natural gas E Natural gas LL	m³/h m³/h	1.89 2.20	1.89 2.20	3.23 3.75	3.68 4.30

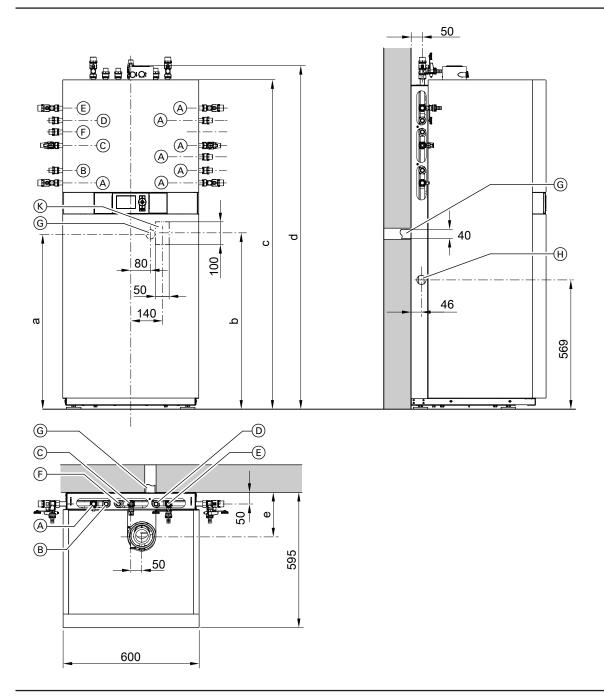
^{© *1} If the gas supply pressure is higher than the maximum permissible value, install a separate gas pressure governor upstream of the system.

 ^{*1} If the gas supply pressure is higher than the maximum permissible value, install a separate to the gas supply pressure is higher than the maximum permissible value, install a separate to the gas supply pressure is higher than the maximum permissible value, install a separate to the gas supply pressure is higher than the maximum permissible value, install a separate to the gas supply pressure is higher than the maximum permissible value, install a separate to the gas supply pressure is higher than the maximum permissible value, install a separate to the gas supply pressure is higher than the maximum permissible value, install a separate to the gas supply pressure is higher than the maximum permissible value, install a separate to the gas supply pressure is higher than the maximum permissible value, install a separate to the gas supply pressure is higher than the maximum permissible value, install a separate to the gas supply pressure is higher than the gas supply

The DHW performance factor NL depends on the cylinder storage temperature Tcyl. Standard values: $Tcyl = 60 \text{ °C} \rightarrow 1.0 \times \text{NL Tcyl} = 55 \text{ °C} \rightarrow 0.75 \times \text{NL Tcyl} = 50 \text{ °C} \rightarrow 0.55 \times \text{NL Tcyl} = 45 \text{ °C} \rightarrow 0.3 \times \text{NL}$.

Gas boiler, types B and C, category II _{2N3P}							
Rated heating output range (to EN 677)		Values in () when operating with LPG P					
$T_F/T_R = 50/30 ^{\circ}C$	kW	3.2 (4.8) - 13.0	3.2 (4.8) - 19.0	5.2 (8.8) - 26.0	5.2 (8.8) - 35.0		
$T_F/T_R = 80/60 ^{\circ}C$	kW	2.9 (4.3) - 11.8	2.9 (4.3) - 17.2	4.7 (8.0) - 23.5	4.7 (8.0) - 31.7		
Flue gas parameters*3							
Flue gas category to G 635/G 636		G ₅₂ /G ₅₁	G ₅₂ /G ₅₁	G ₅₂ /G ₅₁	G ₅₂ /G ₅₁		
Temperature (at a return temperature of 30 °C)							
 at rated heating output 	°C	45	45	45	45		
- at partial load	°C	35	35	35	35		
Temperature (at a return temperature of 60 °C)	°C	68	68	68	70		
Mass flow rate							
– for natural gas							
 at rated heating output (DHW heating) 	kg/h	31.8	31.8	54.3	62.1		
at partial load	kg/h	5.5	5.5	8.7	8.7		
– for LPG							
 at rated heating output (DHW heating) 	kg/h	30.2	30.2	51.5	58.9		
at partial load	kg/h	7.6	7.6	14.0	14.0		
Available draught	Pa	250	250	250	250		
	mbar	2.5	2.5	2.5	2.5		
Standard seasonal efficiency [to DIN] at							
$T_F/T_R = 40/30 ^{\circ}C$	%	u	p to 98 (H _s) [gross	cv] / 109 (H _i) [net cv	/]		
Max. amount of condensate							
to DWA-A 251	l/h	2.3	2.5	4.3	4.9		
Condensate connection (hose nozzle)	Ø mm	20-24	20-24	20-24	20-24		
Flue gas connection	Ø mm	60	60	60	60		
Ventilation air connection	Ø mm	100	100	100	100		

5815 167 GB



^{*3} Calculation values for sizing the flue system to EN 13384.

Flue gas temperatures as actual gross values at 20 °C combustion air temperature.

The flue gas temperature at a return temperature of 30 °C is significant for the sizing of the flue system.

The flue gas temperature at a return temperature of 60 °C is used to determine the application range of flue pipes with maximum permissible operating temperatures.

- A Heating flow R3/4
- B DHW R1/2
- © Gas connection R½
- (D) Cold water R½
- E Heating return R3/4

Rated heating output	а	b	С	d	е
kW	mm	mm	mm	mm	mm
13 to 19	745	750	1425	1465	201
26	745	750	1425	1465	224
35	945	950	1625	1665	224

- F DHW circulation R½ (separate accessory)
- (G) Condensate drain facing backwards into the wall
- (H) Condensate drain to the side
- (K) Wiring area

The dimensioned drawing shows example fittings for upward connection and connection to the left/right, for installation on finished walls. Order the connection sets separately as accessories.

For the dimensions of the individual connection sets, see the technical guide.

If using the connection set (for downward connection) with a premounting bracket for installation on finished walls, maintain a wall clearance of 70 mm.

Note

All height dimensions have a tolerance of +15 mm due to the adjustable feet.

VIESMANN

Variable speed heating circuit pump in the Vitodens 222-F

The integral circulation pump is an HE pump with substantially lower power consumption than conventional pumps.

The pump speed and consequently the pump rate are regulated subject to the outside temperature and the switching times for heating or reduced mode. The control unit transmits the current default settings via an internal databus to the circulation pump.

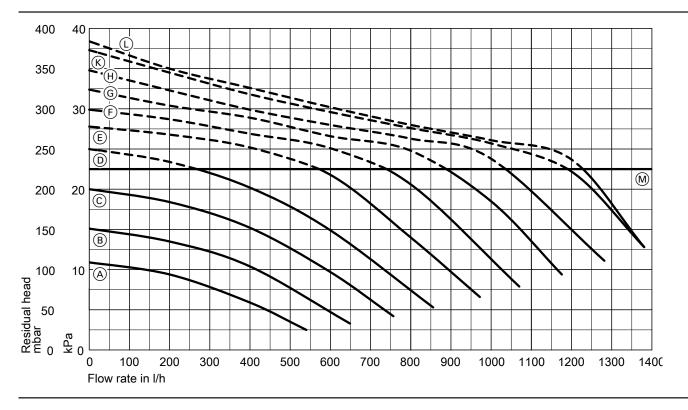
Individually match the minimum and maximum speeds plus the speed for reduced mode to the existing heating system using the control unit codes.

In the delivered condition, the minimum pump rate (coding address "E7") and the maximum pump rate (coding address "E6") are set to the following values:

Rated heating output range in kW	Speed settings in the delivered condition in %					
	Min. pump rate	Max. pump rate				
3.2-13	20	55				
3.2-19	20	65				
5.2-26	30	65				
5.2-35	30	65				

Residual head values of the integral circulation pump

Vitodens 222-F, 3.2-19 kW


Specification - circu	ulation	pump			
Rated heating out-	kW	3.2-13	3.2-19	5.2-26	5.2-35
put					
Circulation pump	Тур	UPM2	UPM2	UPM2	UPM2
	е	15-50	15-50	15-70	15-70
Rated voltage	V~	230	230	230	230
Power consumption					
- Max.	W	37	37	70	70
– Min.	W	6	6	6	6
- Delivered condi-	W	20	25	35	40
tion					

500	50																					
450																	+					
400	40			``																		
350		(K)			٠,																	
300	30			· ·	`_	•				`\												
250				F		•		<i>'</i> /			<u>;;</u>											M
200	20	E D	<u> </u>		_	\ \																
150		©	_																			
100	10	B (A)	<u> </u>			\ \																
Residual head mbar 65 0						\				\			•									
Resid mbar o	АР В																					
	(0 1 Flow ra	100 ate in	20 l/h	0	300	40	00	50	00	60	0	70	0	800)	900	10	000	110	00	1200

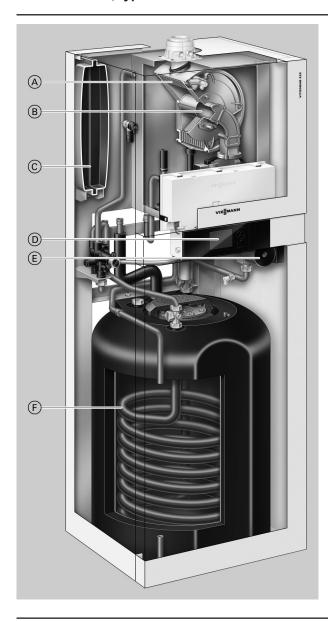
M Upper operational limit

Curve	Pump rate, circulation	Coding address setting "E6"
	pump	
A	10 %	E6:010
B	20 %	E6:020
C	30 %	E6:030
D	40 %	E6:040
E	50 %	E6:050
F	60 %	E6:060
G	70 %	E6:070
\oplus	80 %	E6:080
K	90 %	E6:090
L	100 %	E6:100

Vitodens 222-F, 5.2-35 kW

M Upper operational limit

Curve	Pump rate, circulation	Coding address setting "E6"
	pump	
A	10 %	E6:010
B	20 %	E6:020
©	30 %	E6:030
D	40 %	E6:040
E	50 %	E6:050
F	60 %	E6:060
G	70 %	E6:070
\oplus	80 %	E6:080
K	90 %	E6:090
L	100 %	E6:100


Minimum clearances

Area around the Vitodens for maintenance: min. 700 mm

Maintenance clearances to the l.h. or r.h. side of the Vitodens are ${f not}$ required.

Benefits

Vitodens 222-F, type B2SA

- Stainless steel Inox-Radial heat exchanger for high operational reliability, a long service life and high heating output in the smallest space
- (B) Modulating MatriX cylinder burner with intelligent Lambda Pro Control combustion controller for clean combustion and quiet operation

- © Integral diaphragm expansion vessel
- Digital boiler control unit
- E Integral, variable speed HE circulation pump
- F Internally heated DHW cylinder

The Vitodens 222-F storage combi boiler combines the benefits of the Vitodens 200-W with the high DHW convenience of a separate DHW cylinder.

Like all Viessmann storage combi boilers, the Vitodens 222-F gas condensing boiler takes up little space: width and depth correspond to standard kitchen unit dimensions. The proven MatriX cylinder burner with Lambda Pro Control combustion controller automatically adjusts itself to varying gas qualities and ensures a constantly high standard seasonal efficiency [to DIN] of 98 % (H_s) [gross cv].

The Vitodens 222-F, type B2SA, with its integral 130 I cylinder with internal indirect coil, is particularly suitable for hard water areas. The internal indirect coil with its smooth surface is not prone to attracting limescale deposits.

Recommended applications

- Installation in detached and terraced houses
- New build (e.g. pre-fabricated houses and housing association projects): installation in utility rooms and attics
- Modernisation: replacement of system boilers, floorstanding atmospheric gas boilers and oil/gas boilers with DHW cylinders installed below
- Use in areas with a water hardness of >20 °dH (3.58 mol/m³)

Benefits at a glance

- Standard seasonal efficiency [to DIN] up to 98 % (H_s) [gross cv] / 109 % (H_i) [net cv]
- Durable and efficient thanks to the Inox-Radial heat exchanger
- Modulating MatriX cylinder burner with a long service life thanks to stainless steel MatriX gauze – resistant to high temperature loads
- Enamelled DHW cylinder with internal indirect coil and 130 l capacity (N_L factor up to 1.8)
- Energy efficient HE circulation pump (A-rated)
- Easy to use Vitotronic control unit with plain text and graphic display
- The programming part of the control unit can also be fitted on a wall mounting base (accessory)
- Lambda Pro Control combustion controller for all gas types saves on fees, with inspection interval extended to 3 years
- Universal connection sets for individual installation flush with the wall
- No lateral service clearance required
- Assembly kit (accessory) with the dimensions and design of the appliance for the connection of one regulated and one unregulated heating circuit

Specification

Vitodens 222-F, type B2SA

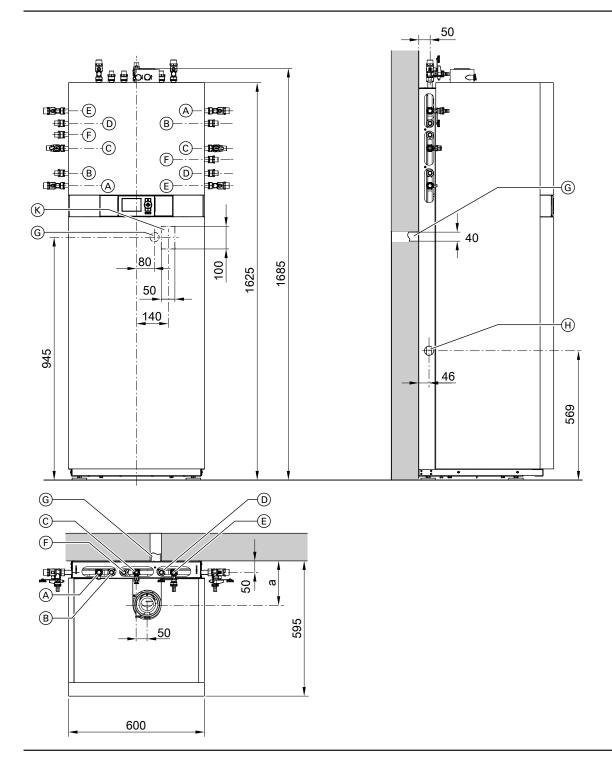
	Values in	() when operating wi	th LPG P
kW			5.2 (8.8) - 26.0
kW			4.7 (8.0) - 23.7
kW			4.7 (8.0) - 23.7
	` ′	` '	4.9 (8.3) - 24.7
	011 (110) 1110	, ,	(0.0)
		XIB to EN 00020	
mbar	20	20	20
		2	2
mbar	50	50	50
kPa	5	5	5
mbar	25.0	25.0	25.0
	2.5	2.5	2.5
mbar	57.5	57.5	57.5
	5.75	5.75	5.75
W	39	53	68
W	62	65	114
kg	139	139	142
I	1.8	1.8	2.4
l/h	1200	1200	1400
l/h	537	739	1018
1	12	12	12
bar	0.75	0.75	0.75
kPa	75	75	75
bar	3	3	3
MPa	0.3	0.3	0.3
			3/4
			1/2
R	1/2	1/2	1/2
	505	505	505
	1	I I	595
			600 1625
K	/2	/2	1/2
1	130	130	130
har			10
	1		10
			23.7
		1	720
W11	1	I I	1.8
1/10 min			182
" 10 Hill	133	100	102
	ı		
m ³ /h	1.89	1.89	2.61
m³/h m³/h	1.89 2.20	1.89 2.20	2.61 3.04
	kW kW kW mbar kPa mbar kPa mbar wbar wbar l l/h l/h l bar kPa	kW 3.2 (4.8) - 13.0 kW 2.9 (4.3) - 11.8 kW 2.9 (4.3) - 17.2 kW 3.1 (4.5) - 17.9 mbar 20 kPa 2 mbar 50 kPa 5 mbar 25.0 mbar 25.5 57.5 57.5 W 39 W 62 kg 139 I 1.8 I/h 1200 I/h 537 I 12 bar 0.75 kPa 75 bar 3 MPa 0.3 R ½ R ½ R ½ I 130 bar 10 MPa 1 kW 17.2 I/h 422 1.3 13	kW 2.9 (4.3) - 11.8 2.9 (4.3) - 17.2 2.5 (4.3) - 17.2 2.5 (4.3) - 17.2 2.5 (4.3) - 17.2 2.5 (4.3) - 17.2 2.5 (4.3) - 17.2 2.5 (4.3) - 17.2 2.5 (4.3) - 17.2 2.5 (4.3) - 17.2 2.5 (4.3) - 17.2 2.5 (4.3) - 17.2 2.9 (4.2) - 17.2 2.9 (4.2) - 17.2 <

^{© *4} If the gas supply pressure is higher than the maximum permissible value, install a separate gas pressure governor upstream of the system.

 ^{*4} If the gas supply pressure is higher than the maximum permissible value, install a separate of the gas supply pressure is higher than the maximum permissible value, install a separate of the gas supply pressure is higher than the maximum permissible value, install a separate of the gas supply pressure is higher than the maximum permissible value, install a separate of the gas supply pressure is higher than the maximum permissible value, install a separate of the gas supply pressure is higher than the maximum permissible value, install a separate of the gas supply pressure is higher than the maximum permissible value, install a separate of the gas supply pressure is higher than the maximum permissible value, install a separate of the gas supply pressure is higher than the maximum permissible value, install a separate of the gas supply pressure is higher than the maximum permissible value, install a separate of the gas supply installed of the gas suppl

The DHW performance factor NL depends on the cylinder storage temperature Tcyl. Standard values: $Tcyl = 60 \text{ °C} \rightarrow 1.0 \text{ × NL Tcyl} = 55 \text{ °C} \rightarrow 0.75 \text{ × NL Tcyl} = 50 \text{ °C} \rightarrow 0.55 \text{ × NL Tcyl} = 45 \text{ °C} \rightarrow 0.3 \text{ × NL}$.

Gas boiler, types B and C, category II _{2N3P}				
Rated heating output range (to EN 677)		Values in () when operating wit	h LPG P
$T_{\rm F}/T_{\rm R} = 50/30~{\rm ^{\circ}C}$	kW	3.2 (4.8) - 13.0	3.2 (4.8) - 19.0	5.2 (8.8) - 26.0
$T_F/T_R = 80/60 ^{\circ}C$	kW	2.9 (4.3) - 11.8	2.9 (4.3) - 17.2	4.7 (8.0) - 23.7
Flue gas parameters*3				
Flue gas category to G 635/G 636		G ₅₂ /G ₅₁	G ₅₂ /G ₅₁	G ₅₂ /G ₅₁
Temperature (at a return temperature of 30 °C)				
 at rated heating output 	°C	45	45	45
- at partial load	°C	35	35	35
Temperature (at a return temperature of 60 °C)	°C	68	68	70
Mass flow rate				
- for natural gas				
 at rated heating output 	kg/h	31.8	31.8	43.9
at partial load	kg/h	5.5	5.5	8.7
– for LPG				
 at rated heating output 	kg/h	30.2	30.2	41.7
at partial load	kg/h	7.6	7.6	14.0
Available draught	Pa	250	250	250
	mbar	2.5	2.5	2.5
Standard seasonal efficiency [to DIN] at				
$T_F/T_R = 40/30 ^{\circ}C$	%	up to 98 (H	H_s) [gross cv] / 109 (H_i)	[net cv]
Max. amount of condensate				
to DWA-A 251	l/h	2.3	2.5	3.5
Condensate connection (hose nozzle)	Ø mm	20-24	20-24	20-24
Flue gas connection	Ø mm	60	60	60
Ventilation air connection	Ø mm	100	100	100


5815 167 GB

^{*3} Calculation values for sizing the flue system to EN 13384.

Flue gas temperatures as actual gross values at 20 °C combustion air temperature.

The flue gas temperature at a return temperature of 30 $^{\circ}$ C is significant for the sizing of the flue system.

The flue gas temperature at a return temperature of 60 °C is used to determine the application range of flue pipes with maximum permissible operating temperatures.

- A Heating flow R¾
 B DHW R½
- © Gas connection R½
- D Cold water R½E Heating return R¾
- F DHW circulation R½ (separate accessory)
- © Condensate drain facing backwards into the wall
- Condensate drain to the side \oplus
- Wiring area

Rated heating output а 5815 167 GB kW mm 13 to 19 201 26 224

Note

The dimensioned drawing shows example fittings for upward connection and connection to the left/right, for installation on finished walls. Order the connection sets separately as accessories.

For the dimensions of the individual connection sets, see the engineering information.

If using the connection set (for downward connection) with a premounting bracket for installation on finished walls, maintain a wall clearance of 70 mm.

All height dimensions have a tolerance of +15 mm due to the adjustable feet.

Variable speed heating circuit pump in the Vitodens 222-F

The integral circulation pump is an HE pump with substantially lower power consumption than conventional pumps.

The pump speed and consequently the pump rate are regulated subject to the outside temperature and the switching times for heating or reduced mode. The control unit transmits the current default settings via an internal databus to the circulation pump.

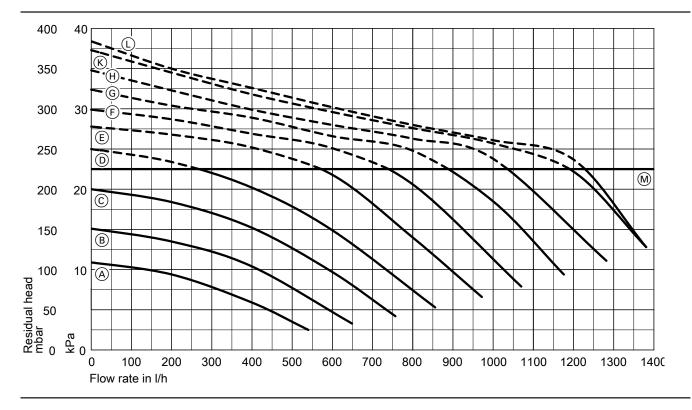
Individually match the minimum and maximum speeds plus the speed for reduced mode to the existing heating system using the control unit codes.

In the delivered condition, the minimum pump rate (coding address "E7") and the maximum pump rate (coding address "E6") are set to the following values:

Rated heating output range in kW	Speed settings in condition in %	the delivered
	Min. pump rate	Max. pump rate
3.2-13	20	55
3.2-19	20	65
5.2-26	30	65

Residual head values of the integral circulation pump

Vitodens 222-F, 3.2-19 kW


Specification – circulation pump										
Rated heating output	kW	3.2-13	3.2-19	5.2-26						
Circulation pump	Type	UPM2	UPM2	UPM2						
		15-50	15-50	15-70						
Rated voltage	V~	230	230	230						
Power consumption										
– Max.	W	37	37	70						
– Min.	W	6	6	6						
 Delivered condition 	W	20	25	35						

500	50	П																				
450																						
400	40	$ \bigcirc $		``																		
350		(K)	•	` \	`,	`\																
300	30	G	`	`` ``	`\				1													
250				F)		<u>``</u>	_	<u> </u>		\ \	<i> </i>	1										M
200	20	E			$\overline{}$			_				/ /										
150		©			/			\ \				/										
၂00 ၂	10	B A		<u> </u>				+														
Residual head mbar 6								/		\ \												
Resid mbar			100	20	00	30	0	400	5	00	60	00	70	00	800) !	900	10	00	110	00	1200
	Flow rate in I/h																					

M Upper operational limit

Curve	Pump rate, circulation	Coding address setting "E6"					
	pump						
A	10 %	E6:010					
B	20 %	E6:020					
C	30 %	E6:030					
D	40 %	E6:040					
E	50 %	E6:050					
F	60 %	E6:060					
G	70 %	E6:070					
\oplus	80 %	E6:080					
ĸ	90 %	E6:090					
L	100 %	E6:100					

Vitodens 222-F, 5.2-26 kW

(K) Upper operational limit

Curve	Pump rate, circulation	Coding address setting "E6"
	pump	
A	10 %	E6:010
B	20 %	E6:020
©	30 %	E6:030
D	40 %	E6:040
E	50 %	E6:050
F	60 %	E6:060
G	70 %	E6:070
\oplus	80 %	E6:080
K	90 %	E6:090
L	100 %	E6:100

Minimum clearances

Area around the Vitodens for maintenance: min. 700 mm

Maintenance clearances to the l.h. or r.h. side of the Vitodens are ${f not}$ required.

Subject to technical modifications.

Viessmann Werke GmbH&Co KG D-35107 Allendorf Telephone: +49 6452 70-0 Fax: +49 6452 70-2780 www.viessmann.com

Viessmann Limited Hortonwood 30, Telford Shropshire, TF1 7YP, GB Telephone: +44 1952 675000 Fax: +44 1952 675040

E-mail: info-uk@viessmann.com